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Abstract. The Gröbner basis method for solving systems of polynomial
equations became very popular in the computer vision community as it
helps to find fast and numerically stable solutions to difficult problems.
In this paper, we present a method that potentially significantly speeds
up Gröbner basis solvers. We show that the elimination template matri-
ces used in these solvers are usually quite sparse and that by permuting
the rows and columns they can be transformed into matrices with nice
block-diagonal structure known as the singly-bordered block-diagonal
(SBBD) form. The diagonal blocks of the SBBD matrices constitute in-
dependent subproblems and can therefore be solved, i.e. eliminated or
factored, independently. The computational time can be further reduced
on a parallel computer by distributing these blocks to different processors
for parallel computation. The speedup is visible also for serial processing
since we perform O(n3) Gauss-Jordan eliminations on smaller (usually
two, approximately n

2
× n

2
and one n

3
× n

3
) matrices. We propose to com-

pute the SBBD form of the elimination template in the preprocessing
offline phase using hypergraph partitioning. The final online Gröbner
basis solver works directly with the permuted block-diagonal matrices
and can be efficiently parallelized. We demonstrate the usefulness of the
presented method by speeding up solvers of several important minimal
computer vision problems.

1 Introduction

The Gröbner basis method for solving systems of polynomial equations was
recently used to solve many important computer vision problems [2, 7, 19, 3, 24,
25]. This method became popular for creating efficient specific solvers to minimal
problems and even an automatic generator for creating source codes of such
minimal Gröbner basis solvers was proposed in [18].

Minimal solvers, such as the 5-point relative pose solver [22, 25] or the P4Pf
absolute pose solver [2], are often used inside a RANSAC [12] loop and are
parts of large systems like SfM pipelines or recognition systems. Maximizing the
efficiency of these solvers is therefore highly important.

Gröbner basis solvers usually consist of two separate steps. In the first step
Gauss-Jordan (G-J) elimination, QR, or LU decomposition of one or several
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matrices created using the so-called elimination templates [18] is performed. In
the second step the solutions are extracted from the eigenvalues and eigenvectors
of a multiplication (action) matrix [23] .

Recently, several papers addressed the numerical stability and the speed of
Gröbner basis solvers [5, 8, 6, 18, 21, 4]. In [5, 8, 6], it has been shown that the nu-
merical stability of Gröbner basis solvers can be improved by reordering columns
in the elimination templates using QR or LU decompositions or by “basis ex-
tension”. Several methods for reducing the size of the elimination templates in
order to speed up the Gröbner basis solvers were presented in [21, 18].

Most recently, two methods that speed up the second step of Gröbner basis
solvers, i.e. the eigenvalue computations, were proposed in [4]. The first method
is based on a modified matrix FGLM algorithm for transforming Gröbner bases
and results in a single-variable polynomial which roots are efficiently computed
only on a certain feasible interval using Sturm-sequences. The second method is
based on fast calculation of the characteristic polynomial of an action matrix,
again solved using Sturm-sequences. Both methods are in fact equivalent and
can be used to significantly speed up the second step of Gröbner basis solvers.

In this paper, we present a method that can significantly speed up the first
step of Gröbner basis solvers, i.e. G-J elimination, QR, or LU decomposition
of matrices from the elimination templates. We observe that these elimination
template matrices are usually quite sparse and by permuting the rows and the
columns they can be transformed into matrices with an agreeable block-diagonal
structure. The diagonal blocks of such permuted matrices constitute indepen-
dent subproblems and as such can be solved, i.e. eliminated or factored, indepen-
dently. The computational time can then be reduced on a parallel computer by
distributing these blocks to different processors and by performing the compu-
tation in parallel. This speedup is also noticeable on single-threaded computers
because O(n3) G-J eliminations on smaller (for the presented problems on two,
approximately n

2 × n
2 and one n

3 × n
3 ) matrices is performed.

To obtain a reasonable speed-up, each block in the permuted matrix should
contain comparable number of entries, i.e. some balance criterion should be main-
tained, and it should be as independent as possible from other blocks. For this
purpose, we permute sparse rectangular matrices from the elimination templates
into a singly-bordered block-diagonal (SBBD) form with minimum border size
while maintaining a given balance criterion on the diagonal blocks.

The problem of permuting sparse matrices into SBBD form is usually for-
mulated as hypergraph partitioning [1]. In this paper, we use state-of-the-art
hypergraph partitioning tool PaToH [9] that uses multilevel hypergraph parti-
tioning approaches based on Kernighan-Lin and Fiduccia-Mattheyses (KLFM)
algorithms [11].

The use of row and column permutations to speed up computations is well-
known in linear algebra and has been previously exploited in computer vision
applications. For instance, in the bundle adjustment problem, one may transform
the involved sparse matrices into arrowhead or block tridiagonal matrices [26, 20].
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However, such transformations are dependent on individual problem instances
and therefore are not used widely in bundle adjustment.

On the other hand, in the proposed method the permutation of an elimi-
nation template matrix into SBBD form can be computed offline once for each
type of minimal problem and applied to all instances. The final online Gröbner
basis solvers work directly with the permuted block-diagonal matrices and can
eliminate the diagonal blocks independently and perform the computations in
parallel. Moreover, the proposed method can be used along with the methods
from [4] that speed up the second step of Gröbner basis solvers.

We demonstrate the usefulness of the presented approach by speeding up
solvers of several important minimal computer vision problems.

Next, we briefly describe the Gröbner basis method for solving systems of
polynomial equations and the process of generating Gröbner basis solvers.

2 Gröbner basis method

Gröbner basis method for solving systems of polynomial equations became very
popular in the computer vision community since it helps to find fast and numer-
ically stable solutions to difficult problems.

Let
f1(x) = 0, . . . , fm(x) = 0 (1)

be a system of m polynomial equations in n unknowns x = (x1, . . . , xn) that
we want to solve and let this system have a finite number of solutions. The
polynomials f1, ..., fm define an ideal I = {Σm

i=1fi hi |hi ∈ C [x1, ..., xn]}, which
is a set of all polynomials that can be generated as polynomial combinations of
the initial polynomials f1, ..., fm. In general, an ideal can be generated by many
different sets of generators which all share the same set of solutions. There is
a special set of generators though, the reduced Gröbner basis w.r.t. the lexico-
graphic ordering, which generates the ideal I but is easy (often trivial) to solve
at the same time [10].

Unfortunately, computing the Gröbner basis w.r.t. the lexicographic ordering
for larger systems of polynomial equations, and therefore for the most computer
vision problems, is often not feasible.

Therefore, Gröbner basis solvers usually construct a Gröbner basis G under
a different ordering, e.g. the graded reverse lexicographic (grevlex) ordering,
which is often easier to compute. This Gröbner basis G is then used to construct
a special multiplication matrix Mp [23], also called the “action matrix”. Let A

be the quotient ring A = C [x1, ..., xn] /I [10] and B =
{
xα|xαG

= xα
}

its

monomial basis, where xα = xα1
1 xα2

2 ...xαn
n and xαG

is the remainder of xα after
the division by a Gröbner basis G. Then the action matrix Mp is the matrix of
a linear operator Tp : A → A performing multiplication by a suitably chosen
polynomial p in A w.r.t. the basis B.

The action matrix Mp can be viewed as a generalization of the companion
matrix used in solving one polynomial equation in one unknown [10], since the
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solutions to our system of polynomial equations (1) can be obtained from the
eigenvalues and eigenvectors of this action matrix.

3 Gröbner basis solvers

Many polynomial problems in computer vision share the convenient property
that the monomials which appear in the set of initial polynomials (1) are, up
to the concrete coefficients arising from non-degenerate image measurements,
always identical. Thanks to this property, it is not necessary to use general
algorithms [10] for computing Gröbner bases for solving these problems. Usu-
ally, specific Gröbner basis solvers that can efficiently solve all non-degenerate
instances of a given problem are used in computer vision.

The process of creating these specific Gröbner basis solvers consist of two
different phases. In the first “offline” phase, so-called “elimination templates”
are found. These templates say which input polynomials should be multiplied
with which monomials and then eliminated to obtain all polynomials from the
grevlex Gröbner basis or at least all polynomials necessary for constructing an
action matrix. For a one concrete problem, this phase is performed only once.

The second “online” phase consists of two steps. In the first step, the pre-
computed elimination templates are filled with specific coefficients arising from
image measurements and eliminated using G-J elimination to construct the ac-
tion matrix. Then, eigenvalues and eigenvectors of this action matrix are used
to find solutions to the initial polynomial equations.

It was shown in [4], that the second step of the online solver can be sped up
by replacing the eigenvalue computations with the computations of the charac-
teristic polynomial of the action matrix and by efficiently finding roots of this
polynomial using Sturm-sequences.

In this paper, we will show that at the cost of some preprocessing performed
in the offline phase we can significantly speed up also the first step of online
Gröbner basis solvers, i.e., G-J elimination, QR, or LU decomposition of matrices
from the elimination templates.

Elimination templates are created in the offline phase by multiplying initial
polynomials with monomials. Since we are multiplying polynomials by monomi-
als only, the new generated polynomials have the same number of monomials as
the polynomials from which they are created.

In the matrix representation of polynomials that is used in the elimination
template, the rows of the matrix correspond to the individual polynomials and
the columns to the monomials. This means that we are effectively only shifting
the coefficients in this matrix when generating a new polynomial by multiplying
some initial polynomial fi by a monomial. A new row that corresponds to the
new polynomial contains the same entries as the row corresponding to fi, but in
different columns. Therefore, the elimination template matrices are usually quite
sparse. We will show that in these situations we can permute the rows and the
columns of these matrices in the preprocessing offline phase and in this way create
matrices that have a nice block-diagonal structure known as the singly-bordered
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block diagonal (SBBD) form. The diagonal blocks of such SBBD matrices can
then be eliminated or factored using LU or QR decomposition independently.
The computational time can be significantly reduced by distributing these blocks
to different processors and by performing the computations in parallel. Moreover,

there is speedup from approximately n3 to (k+1)·
(
n
k

)3
, even for serial processing

of an SBBD matrix with k well balanced blocks.
Since the permutation matrices that transform the elimination template ma-

trix to the SBBD form are computed in the offline phase, the time spent com-
puting these permutation matrices doesn’t influence the speed of the final online
solver. Moreover, the computational cost of finding the permutation matrices
(for the presented solvers less than 0.1s) is comparable or even lower than the
computational time of the remaining steps of the offline phase.

4 Sparse Matrix Partitioning

In this section, we describe the singly-bordered block-diagonal form and the way
how to transform a given matrix to this form.

4.1 Singly-Bordered Block-Diagonal Form

Our goal is to permute the rows and the columns of an m × n sparse matrix A

into a k-way singly-bordered block-diagonal form

ASB = PrAP
⊤
c =


A11 B1

A22 B2
. . .

...
Akk Bk

 , (2)

where Pr and Pc are, respectively, the row and the column permutation matrices
to be determined, k is the pre-defined number of blocks, A11, . . . , Akk are rectan-

gular matrices and B =
(
B⊤1 . . . B⊤k

)⊤
is m× nc border submatrix. Columns of B

are sometimes called the coupling columns.
In our case, we want to permute matrix A into an SBBD form ASB (2) such

that the number of coupling columns nc is minimized while a given balanced
criterion is satisfied, i.e. each block Ajj , j = 1, . . . , k of the permuted matrix
ASB contains comparable number of entries.

Using hypergraph model for sparse matrices, the problem of permuting a
sparse matrix to SBBD form (2) reduces to the well-known hypergraph parti-
tioning problem [1].

Next, we describe hypergraphs and hypergraph partitioning to a level perti-
nent to this work.

4.2 Hypergraph partitioning

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets (or
hyperedges) N , where every net ni ∈ N is a subset of vertices, i.e. ni ⊆ V.
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Definition 1. Given a hypergraph H = (V,N ), Π = {V1, . . . ,Vk} is a k-way
partition of H, if the following holds:

1. Vj ̸= ∅, Vj ⊆ V, for 1 ≤ j ≤ k, i.e. each part Vj is nonempty subset of V,
2. Vi ∩ Vj = ∅ for all 1 ≤ i ≤ j ≤ k, i.e. parts are pairwise disjoint,

3.
∪k

j=1 Vj = V, i.e. the union of all k parts is equal to V.

As in the case of graphs, we can associate weights with hypergraph vertices.
Let us denote w (v) the weight associated with a vertex v. Now, we can define
the weight of a set of vertices S as

W (S) =
∑
v∈S

w (v) . (3)

The partition Π = {V1, . . . ,Vk} is said to be balanced for a given ϵ ≥ 0, if
each part Vj satisfies the balance criterion

W (Vj)

Wavg
≤ 1 + ϵ, j = 1, . . . , k, (4)

where W (Vj) is the weight (3) of a part Vj and Wavg = W (V)
k .

Let NS be the set of all nets (hyperedges) that connect more than one part
of a partition Π in H. This means that all nets nj ∈ NS have at least one vertex
in more than one part Vi ∈ Π. Such nets nj ∈ NS are called cuts or external
nets.

Nets that connect only one part Vi ∈ Π, i.e. they have all vertices in this
part, are called internal nets of part Vi. Let us denote the set of all internal nets
of a part Vi as Ni, i = 1, . . . , k. Then, the k-way partition Π = {V1, . . . ,Vk} that
is defined on the vertex set V can also be considered as a (k + 1)-way partition
Π = {N1, . . . ,Nk;NS} on the net set N . The set NS can be considered as a net
separator whose removal gives k disconnected vetrex parts V1, . . . ,Vk as well as
k disconnected net parts N1, . . . ,Nk.

The goal of partitioning is to minimize a cost function called cutsize defined
over the external nets NS . Let c (n) denote the cost associated with the net
n ∈ N . Then a cost function can be defined as

χ(Π) =
∑

nj∈NS

c (nj) . (5)

In our problem of transforming a matrix to an SBBD form all nets have unit
costs, i.e., c (n) = 1 for all n ∈ N and therefore the cost function has very simple
form

χ(Π) =
∑

nj∈NS

1 = |NS | . (6)

The hypergraph partitioning problem can be defined as a problem of dividing
vertex set V of a hypergraph H into k parts, i.e. a problem of finding a k-way
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A =



n1 n2 n3 n4 n5 n6 n7 n8

v1 • • • •
v2 • • •
v3 • • •
v4 • •
v5 • •
v6 • • •

 n8 n1

n3 n4 n7 n6
n5 n2

v1

v5 v6 v3

v2

v4

Fig. 1. A 6× 8 matrix A (Left) and its column-net hypergraph representation (Right);
symbol “•” represents a nonzero entry of the matrix A.

partition Π = {V1, . . . , Vk}, such that the cost (5) is minimized while the balance
criterion (4) is fulfilled for a given ϵ:

Given H = (V,N ) , ϵ,
find Π = argmin

∑
nj∈NS

c (nj) ,

Π = {V1, . . . ,Vk} = {N1, . . . ,Nk;NS}
subject to

W (,Vj)
Wavg

≤ 1 + ϵ, j = 1, . . . , k.

Unfortunately, the hypergraph partitioning problem is known to be NP-
hard [13].

4.3 Matrix partitioning

An m × n matrix A = (aij) can be represented as a hypergraph HA = (V,N ).
In the column-net hypergraph model, HA contains m vertices and n nets (hy-
peredges), i.e. there exists one vertex vi ∈ V for each row i of A and one net
nj ∈ N for each column j of A. In this model, the net nj ⊆ V contains vertices
corresponding to the rows that have nonzero entry in column j, i.e. vi ∈ nj if
and only if aij ̸= 0. This means that the degree of the vertex vi is equal to the
number of nonzero entries in row i of A and the size of the net nj is equal to the
number of nonzero entries in column j of A.

Figure 1 (Left) shows an example of a 6 × 8 matrix A and its column-net
hypergraph representation (Right).

Using the hypergraph representation of the matrix A, the problem of trans-
forming A to SBBD form ASB (2) can be cast as a hypergraph partitioning
problem in which the cost (6) is equal to the number of coupling columns nc in
ASB . This claim can be formalized as theorem [1]:

Theorem 1. Let HA = (V,N ) be the hypergraph representation of the matrix
A. A k-way partition Π = {V1, . . . ,Vk} = {N1, . . . ,Nk;NS} of HA gives a per-
mutation of A to SBBD form ASB (2), where vertices in Vi represent the rows
and the internal nets in Ni the columns of the ith diagonal block of ASB, and
external nets in NS represent the coupling columns of ASB. Therefore,

– minimizing the cutsize (6) minimizes the number of coupling columns, and
– if the criterion (4) is satisfied, then the diagonal submatrices are balanced.
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A =



N1 N2 N1 NS N2 N2 NS N1

V1 • • • •
V2 • • •
V2 • • •
V2 • •
V1 • •
V1 • • •

 ASB =



n1 n3 n8 n2 n5 n6 n4 n7

v1 • • • •
v5 • •
v6 • • •
v2 • • •
v3 • • •
v4 • •


Fig. 2. (Left) 2-way partitioning Π = {V1,V2} = {N1,N2;NS} of HA. (Right) SBBD
form ASB of A induced by Π.

Figure 2 (Left) shows a 2-way partitioning Π = {V1,V2} = {N1,N2;NS} of the
matrix HA from Figure 1 and its SBBD form ASB induced by Π (Right).

5 Experiments

To demonstrate the usefulness of the presented approach, we used this method to
speed up solvers of three important minimal relative and absolute pose problems.
Even though these problems have been previously solved using the Gröbner basis
method [18], the large elimination templates connected with these problems
made the respective solvers relatively slow.

For each of these Gröbner basis solvers, we have precomputed the permu-
tation matrices that transform the elimination template matrix into an SBBD
form. We have formulated the problem of permuting the sparse matrix into an
SBBD form as the hypergraph partitioning problem (see Section 4.3) and we
have used the state-of-the-art hypergraph partitioning tool PaToH [9] to solve
this problem. From PaToH, we have received the permutation matrices that we
have used to permute the rows and the columns of the matrix from the elimina-
tion template.

Since PaToH uses heuristics for solving the hypergraph partitioning and each
time returns a slightly different result, we have run this partitioning tool several
times for every elimination template matrix. We have obtained reasonable and
stable partitions from PaToH for all tested minimal solvers. In all PaToH runs,
for the same elimination template matrix, PaToH returned very similar results
with a similar number of coupling columns (+/- 5). We have selected the ”best
partitioning” as the partitioning with the smallest number of coupling columns
(border) among all runs. For each problem, we have computed the permutation
matrices only once in the preprocessing offline phase.

The difference between the new online Gröbner basis solvers and the orig-
inal Gröbner basis solvers is that the new solvers work directly with the per-
muted block-diagonal matrices and therefore perform smaller G-J eliminations
and moreover can be parallelized.

Since the numerical stability of the new solvers is similar to the numerical
stability of the state-of-the-art solvers, in this section, we compare only the speed
of the solvers.
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Further, because all of the solvers are algebraically equivalent, we have evalu-
ated them on synthetic noise free data only. In our experiments and performance
tests, we executed each algorithm 10K times on synthetically generated data. All
scenes in these experiments were generated using 3D points randomly distributed
in a 3D cube. Each 3D point was projected by cameras with random yet feasible
orientations and positions and with random or fixed focal lengths. In the case of
radial distortion problems, radial distortion generated by one-parameter division
model was added to all image points to generate noiseless distorted points.

Next, we describe three minimal problems, the existing Gröbner basis solvers
as well as the new SBBD solutions we based on these solvers, and the gained
speed-up.

5.1 9-point relative pose different radial distortion problem

Omnidirectional cameras and wide angle lenses are often used in computer vi-
sion applications. In fact, not only wide angle lenses but virtually all consumer
camera lenses suffer from some amount of radial distortion. Ignoring this type
of distortion, even for standard cameras, may lead to significant errors in 3D
reconstruction, metric image measurements, or in camera calibration.

The first problem that we have studied is the problem of simultaneous es-
timation of the fundamental matrix and two radial distortion parameters for
two uncalibrated cameras with different radial distortions from nine image point
correspondences. This problem is useful in applications where images of one
scene have been taken by two different cameras, for example by a standard dig-
ital camera and by a camera with a wide angle lens or by an omnidirectional
camera.

This 9-point distortion problem can be after some manipulation of equations
formulated as a system of four equations in four unknowns. Several Gröbner
basis solutions to this problem exist [19, 18]. The solution [18] which results in
the smallest elimination template, performs G-J elimination of a 179×203 matrix
and extracts 24 solutions from the eigenvalues and eigenvectors of a 24×24 action
matrix.

The large 179×203 elimination template matrix makes the 9-point distortion
solver [18] relatively slow and not very useful in real applications. However, we
will show that this elimination template matrix can be transformed to a matrix
in SBBD form and therefore the computational time of G-J elimination can be
significantly reduced.

SBBD form For the 9-point distortion solver, as well as for the two remaining
studied minimal solvers, we have obtained the best results, i.e. the smallest
number of the coupling columns and a well balanced blocks in SBBD matrix (2),
for two blocks.

First, we have removed the last 24 columns of the 179×203 elimination tem-
plate matrix M from the state-of-the-art solver [18]. These columns correspond
to the basis B of the quotient ring A = C [x1, ..., xn] /I and should not be per-
muted and eliminated. Then, we have used the square 179 × 179 matrix as the
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Fig. 3. 9-point radial distortion problem: (Left) the input 179× 203 elimination
template matrix. (Center) The SBBD form of this matrix found by PaToh for k = 2.
The black dash-dot lines separate the independent blocks and the coupling columns
with the red dash-dot line separating the last 24 basis columns. (Right) A matrix
obtained after two independent G-J eliminations of the two blocks of ASB .

input to the hypergraph partitioning tool PaToH [9]. We set the weights to 1
and the PaToH imbalance ratio to 3%. These are the deafult values for PaToH
and worked well for all studied solvers.

Figure 3 shows the input 179 × 203 elimination template matrix (Left) and
its SBBD form found by PaToh for k = 2 (Center). In this case, the size of the
first block A11 in ASB (2) is 90×47, the size of the second block A22 is 89×57 and
the number of the coupling columns nc together with the 24 basis columns is 99.
The diagonal block matrices A11 and A22 are independent and can be therefore
eliminated separately.

Figure 3 (Right) shows the matrix Mr that we have obtained after two separate
G-J eliminations of the rows of ASB that correspond to A11 and A22. In this case,
we have permuted the eliminated rows such that the identity matrix is at the
top left corner.

After performing these two separate eliminations, it is sufficient to perform
G-J elimination of the bottom right 75× 99 submatrix of Mr. It is not necessary
to eliminate all rows of Mr above this bottom submatrix. To create the action
matrix, we only need four from the first 104 rows and therefore it is sufficient to
eliminate only these four rows from the top 104 rows of Mr.

5.2 P4P+f problem

The second problem is the problem of estimating the absolute pose of a camera
with unknown focal length from four 2D-3D point correspondences. This problem
results in five equations in four unknowns and has ten solutions [2]. The P4P+f
problem is very important in real Structure-from-Motion pipelines and therefore
the efficiency of its solver is crucial.

As the basis of our method we have used the state-of-the art P4P+f solver
downloaded from the webpage [16]. This solver performs G-J elimination of an
78×88 elimination template matrix and extracts solutions from a 10×10 action
matrix.
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Fig. 4. P4P+f problem: (Left) the input 78×88 elimination template matrix. (Cen-
ter) The SBBD form of this matrix found by PaToh for k = 2. The black dash-dot lines
separate the independent blocks and the coupling columns and the red dash-dot line
separate the last 10 basis columns. (Right) A matrix obtained after two independent
G-J eliminations of the two blocks of ASB .

SBBD form For the P4P+f solver, we have precomputed in the offline phase
the 2-block SBBD form ASB (2) of its 78 × 88 elimination template matrix.
As for the 9-point distortion problem, we have fixed the last 10 columns that
correspond to the basis B of the quotient ring A and run PaToH on a square
78× 78 matrix.

Figure 4 shows the input 78× 88 elimination template matrix of the P4P+f
solver (Left) and its SBBD form ASB found by PaToh for k = 2 (Center). In this
case, we have obtained nice blocks of size 37× 24 and 41× 35, and a relatively
small number of coupling columns nc = 19. This means that together with 10
basis columns we have obtained a border of size 29.

Figure 4 (Right) shows the matrix Mr which we have obtained after two
separate G-J eliminations of the first 37 and the last 41 rows of the SBBD
matrix ASB . We have again permuted the eliminated rows such that the identity
matrix is in the top left corner.

After performing the two independent eliminations, it is sufficient to perform
G-J elimination of the bottom right 19 × 29 submatrix of Mr. Again, it is not
necessary to eliminate all rows of Mr above this submatrix. To create the action
matrix, it is sufficient to eliminate only four rows from the top 59 rows of Mr.

5.3 P4P+f+r problem

The last problem that we have solved is the problem of estimating the absolute
pose of a camera with unknown focal length and unknown radial distortion from
four 2D-3D point correspondences. As shown in [15], the consideration of radial
distortion in absolute pose solvers may bring a significant improvement in many
real world applications. The general formulation of this problem [15] results in
five equations in five unknowns and in a quite large and impractical solver (a
1134 x 720 matrix) with 24 solutions. The final solver runs in about 70ms.

A more practical solution to the P4P+f+r problem was proposed in [3]. By
decomposing the problem into a nonplanar and planar cases, much simpler and
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Fig. 5. P4P+f+r problem: (Left) the input 136× 152 elimination template matrix.
(Center) The SBBD form of this matrix found using PaToh for k = 2. The black
dash-dot lines separate the independent blocks and the coupling columns, the red
dash-dot line separates the last 16 basis columns. (Right) A matrix obtained after two
independent G-J eliminations of the two blocks of ASB .

efficient solvers were obtained. The planar solver is quite simple and performs
G-J elimination of a 12×18 matrix. The solution to the non-planar case requires
to perform G-J elimination of a 136×152 matrix and the eigenvalue computation
of a 16× 16 matrix. The non-planar solver from [3] was used as the input of our
new method.

SBBD form The non-planar P4P+f+r solver [3] has 16 solutions. We have
first reordered the columns of the 136× 152 elimination template matrix of this
solver, such that the columns corresponding to the 16 dimensional basis B of the
quotient ring A were at the end of this matrix. Then, we have fixed these last 16
columns and executed the hypergraph partitioning tool PaToH [9] on the square
136 × 136 matrix. Again, we have set the weights to 1, the number of required
blocks to 2, and the imbalance ratio to 3%.

The input 136×152 elimination template matrix for the P4P+f+r solver can
be seen in Figure 5 (Left) and its SBBD form ASB found by PaToH for k = 2
in Figure 5 (Center). In this SBBD matrix ASB , the size of the first block A11
is 68 × 45, the size of the second block A22 is 68 × 44, and the number of the
coupling columns nc together with the 16 fixed basis columns is 63.

Figure 5 (Right) shows the matrix Mr that has been obtained after two sepa-
rate G-J eliminations of the first 68 and the last 68 rows of the SBBD matrix ASB

and after the permutation of the eliminated rows such that the identity matrix is
at the top left corner. Again, these two blocks can be eliminated independently.

After performing these two independent eliminations it is sufficient to per-
form G-J elimination of the bottom right 47× 63 submatrix of Mr. In this case,
we need the eight of the first 89 rows to create the action matrix. Therefore, in
the final step it it sufficient only to eliminate these eight rows from the top 89
rows of Mr.
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9pt orig 9pt SBBD P4P+f orig P4P+f SBBD P4P+f+r orig P4P+f+r SBBD

932.9µs 186.8µs 58.7µs 18.6µs 320.8µs 106.2µs

Table 1. Speed comparison of G-J eliminations of the original and the SBBD elimi-
nation template matrices for the three considered minimal problems.

9pt orig 9pt SBBD P4P+f orig P4P+f SBBD P4P+f+r orig P4P+f+r SBBD

362.8µs 180.6µs 23.1µs 12.1µs 116.2µs 68.3µs

Table 2. Speed comparison of sparse G-J eliminations of the original and the SBBD
elimination template matrices for the three considered minimal problems.

5.4 Speedup

In our experiments we focused on the achieved speedup in the first step of the
considered Gröbner basis solvers, i.e. the G-J elimination of the elimination
template matrices. We reimplemented all state-of-the art solvers in C++ and
used the same math libraries in all tests. In the second step of all Gröbner basis
solvers, we used standard eigenvalue method [18] to find the solutions to the
problem.

The second step of the Gröbner basis solvers can be sped up by replacing the
eigenvalue computations with the characteristic polynomial method and Sturm
sequences presented in [4]. However, the characteristic polynomial method [4] is
independent from the method presented in this paper, i.e. the method from [18]
speeds up a different part of Gröbner basis solvers, and therefore we didn’t
consider it in our experiments. The new SBBD method and the characteristic
polynomial method [4] can be used concurrently to obtain final efficient solvers.

All tests were performed on an Intel i7-4700MQ 2.4Ghz based laptop.

Table 1 shows the speed comparison of G-J eliminations of the original and
the SBBD elimination template matrices for the three considered minimal prob-
lems. In this case we were not exploiting the sparsity of matrices in G-J elim-
ination. We can see that for the 9pt radial distortion solver we have achieved
almost 5× speed up, and for the P4P+f solver and the P4P+f+r solver more
than 3× speed ups.

Table 2 shows the same speed comparison, however, in this case for sparse
G-J eliminations. We can see that the speed ups are slightly smaller. This is
caused by the fact that the original elimination template matrices have sparser
structure than the submatrices used in the SBBD solvers.

Note that in the case of the 9pt SBBD solver there is almost no difference in
running times between sparse and general G-J eliminations. This is caused by
high fill-in of matrices that appear in this SBBD solver.
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6 Conclusion

In this paper, we have shown that the elimination template matrices used in
popular Gröbner basis solvers are usually quite sparse and that by permuting
their rows and columns can be transformed into matrices with a nice block-
diagonal structure known as the singly-bordered block-diagonal (SBBD) form.
The permutation of an elimination template matrix into the SBBD form can
be computed in the preprocessing offline phase using hypergraph partitioning.
Therefore, the time for finding the permutation matrices doesn’t influence the
speed of the final online Gröbner basis solver.

The final online Gröbner basis solver works directly with the permuted SBBD
matrices. The computational cost of the first step of these Gröbner basis solvers
is significantly reduced since we perform O(n3) G-J eliminations on smaller (for
the presented solvers usually two approximately n

2 ×
n
2 and one n

3 ×
n
3 ) matrices.

Moreover, two of these three G-J eliminations can be performed independently
and therefore parallelized. We have demonstrate the usefulness of the presented
method by speeding up several important minimal computer vision solvers.
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